Course curriculum

    1. welcome and install Method1

      FREE PREVIEW
    2. 123 welcome skill shared and topic covered

      FREE PREVIEW
    3. 4 install anaconda Phyton MAC OS

    4. 5 install anaconda Phyton part 2

    5. 6 old how to install phyton

    6. 7 an introduction

    7. 8 an introduction parT2

    8. 9 how to concatenate string

    9. 10 using phyton string

    10. 11 the phyton find method

    11. 12 the phyton lower method

    12. 13 the phyton replacement method

    13. 14 the python strip method

    14. 15 how to add new lines

    15. 16 working with integers

    16. 17 working with float in python

    17. 18 how to convert

    18. 19 what are python comments

    19. 20 introduction to python list

    20. 21 how to edit list in python

    21. 22 adding comment to our lists

    22. 23 the python pop method

    23. 24 how to organis a list in python

    24. 25 how to find the length of a list

    25. 26 looping through a list in python

    26. 27-32

    27. 33 what is indentation 34turple

    28. 34 tuples

    29. 35 introduction to pythons input

    30. 36 pythons if statements

    31. 37 conditional tests with pythons if

    32. 38 when values are not equal to each other

    33. 39 comparing numbers in python

    34. 40 pythons-AND-conditon

    35. 41 pythongs-OR-condition

    36. 42 the pythons in keywords

    37. 43 pythons NOT in keywords

    38. 44 begginers if elif else chain

    39. 45 begginers multiple conditions

    40. 46 begginers updated if with list

    41. 47 begginers multiple list

    42. 48 an introduction to python diction

    43. 49 introduction to python diction part 2

    44. 50 begginers python in operator

    45. 51 get method

    46. 52 begginers editing values in a dictionary

    47. 53 begginers looping through a dictionary

    48. 54 other ways to loop dictionary

    49. 55 using python dict in list

    50. 56 list in dictionary

    51. 57 inpur prompr

    52. 58 while loop part 1

    1. 91 init method

    2. 92 instance of a class

    3. 93 accessing attributes

    4. 94 calling methos

    5. 95 multiple instances

    6. 96 ereader class

    7. 97 attribute default value

    8. 98 modify directly

    9. 99 modify through method

    10. 100 imrementa attributes

    11. 101 inheritance

    12. 102 child method

    13. 103 overide methods

    14. 104 instances as a tributes

    15. 105 import a single class

    16. 106 multiple classes in a module

    17. 107 multiple class

    18. 108 import an entire module

    19. 109 all class from module

    20. 110-115 working with files

    21. 116-117 writing to an empty file

    22. 118-119 introduction to exceptions-zero division error

    23. 120 try except block

    24. 121 handling exceptions

    25. 122 what to do when

    26. 123 analyzing text

    27. 124 multiple files

    28. 125 failing silently

    29. 126 json dump function

    30. 127 jason load method

    31. 128 storing reading data in python

    32. 129 what is refectoring

    33. 130 testing your code in python

    34. 131 conclussion thank

    1. 6 phytonn basis part2

    2. 7 phyton basis part3

    3. 8 phyton basics part4

    4. 9 introduction to phyton

    5. 10 type of data

    6. 11 MMM

    7. 12 using mean median mode in phytons

    8. 13 variation and standard deviation

    9. 14 probability densityy

    10. 15 common data distribution

    11. 16 percentage and moment

    12. 17 a crash course in matplotlibrary

    13. 18 data visualisatiion

    14. 19 covariance and correlation

    15. 20 exercise conditional probability

    16. 21 exercise solution to conditional probability

    17. 22 bayes theorem

    18. 23 linear regression

    19. 24 polynomian regression

    20. 25 multiple regression

    21. 26 multilevel model

    22. 27 supervised and unsupervised machine learning

    23. 28 using train test to prevent overfi

    24. 29 bayesian method conccepts

    25. 30 implementing a spam classified

    26. 31 k means cclustering

    27. 32 clustering people by income

    28. 33 measuing entropy

    29. 34 window installing graphviz

    30. 35 mac installing graphvis

    31. 36 linus installing graphviz

    32. 37 decision tree concept

    33. 38 decision tree predicting hireing

    34. 39 essemble learning

    35. 40 activities xgboost

    36. 41 support vector machine svm

    37. 42 using svm to cluster people

    1. 43 iser based coll

    2. 44 ADVACEItem based coll

    3. 45 FINDING MOVIES SIMILARITY

    4. 46 IMPROVING THE RESULTS OF MOVIES SIMILARITIES

    5. 47 making movies recomendations

    6. 48 improving the recommendation result

    7. 49 k nearest neighbors concepts

    8. 50 ADVANCE using knn to predit a rating

    9. 51 advance dimentionality

    10. 52 ADVANCE pca exaple

    11. 53 ADVANCE data warehousing etl-and-elt

    12. 54 reinforcement learning

    13. 55 hands on with q-learning

    14. 56 understanding confussion matrix

    15. 57 measuring clasiffier precision

    16. 58 bias variace tradeoff

    17. 59 kfoid cross validation

    18. 60 data cleaning

    19. 61 cleaning weblog data

    20. 62 normalizing numerica data

    21. 63 detecting outliers

    22. 64 featrue engineer

    23. 65 imputation techniques for missing datas

    24. 66 handling unbalanced data

    25. 67 bining transformation

    26. 68 java 8 and spark installation

    27. 69 installing spark part 1

    28. 70 installing spark part 2

    29. 71 introduction to spark

    30. 72 spack and the resillient ditribute

    31. 73 introducing milib

    32. 74 decision tree in spark

    33. 75 kmeans cluster in spark

    34. 76 tf-idf spark

    35. 77 searching wikipedia with spark

    36. 78 using the spark 2 data frame api

    37. 79 deploying models to production

    38. 80 a-b-testing concept

    39. 81 t tests and p values

    40. 82 hand on with t-test

    41. 83 determine how long to run an

    42. 84 a-b-test-gotchas

About this course

  • $24.00
  • 165 lessons
  • 19 hours of video content

Discover your potential, starting today